Quenched bond randomness in marginal and non-marginal Ising spin models in 2D
نویسندگان
چکیده
منابع مشابه
Collective excitations and marginal stability of quantum Ising spin glasses
We solve the Sherrington-Kirkpatrick (SK) model in a transverse field Γ deep in its quantum glass phase at zero temperature. We show that the glass phase is critical everywhere, exhibiting collective excitations with a gapless Ohmic spectral function. Using an effective potential approach, we interpret the latter as being due to disordered spin waves which behave as weakly coupled, underdamped ...
متن کاملSpin–spin critical point correlation functions for the 2D random bond Ising and Potts models
We compute the combined two and three loop order correction to the spin-spin correlation functions for the 2D Ising and q-states Potts model with random bonds at the critical point. The procedure employed is the renormalisation group approach for the perturbation series around the conformal field theories representing the pure models. We obtain corrections for the correlations functions which p...
متن کاملMarginal Anisotropy in Layered Aperiodic Ising Systems
— Onétudie des systèmes d'Ising apériodiques en couchesà deux dimensions dans la limite anisotrope extrême o` u ils correspondentà des chaˆınes quantiques d'Ising en champ transverse. La modulation des interactions est engendrée par une suite apériodique obtenue par substitution. D'après le critère de Luck, une telle perturbation devient marginale lorsque l'exposant de " divagation " associéà l...
متن کاملCritical behaviour of compressible Ising models at marginal dimensionalities
2014 Renormalization group methods are applied to study the critical behaviour of a compressible n-component Ising model with short range interactions at d = 4 and a one component Ising model with dipolar interactions at d = 3. The recursion equations are exactly solved in the case of an elastic system of spherical symmetry (d = 4) or cylindrical symmetry (d = 3); new types of logarithmic corre...
متن کاملEfficient algorithm for random-bond ising models in 2D.
We present an efficient algorithm for calculating the properties of Ising models in two dimensions, directly in the spin basis, without the need for mapping to fermion or dimer models. The algorithm computes the partition function and correlation functions at a single temperature on any planar network of N Ising spins in O(N;{3/2}) time or less. The method can handle continuous or discrete bond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Mechanics: Theory and Experiment
سال: 2008
ISSN: 1742-5468
DOI: 10.1088/1742-5468/2008/11/p11009